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Abstract: 
For most project managers, additions to the scope of a project are problematic: not only must 
the project complete its original goals, but also new ones. And while cost is naturally important, 
perhaps the biggest challenge is adapting the design of a system to incorporate new 
functionality, which may lead to inefficiency in development and implementation. This paper 
describes the sequence of scope changes to a data collection system, and how collaboration 
between the customer, the end user and the suppliers increased the functionality of the solution 
as the capabilities expanded. The result is a system which started as a simple data collection 
device and has evolved into a traffic management system handling data format conversion, 
security oversight, instrumentation command and control, traffic routing, and, still, data 
collection. This paper provides insight into the process by which the new functionality was 
implemented, illustrating how economies of power, mass and volume can be achieved by the 
use of specialist software running on versatile hardware. That process is in contrast to the 
more traditional "one box, one function" approach with hardware modules, which is 
undoubtedly elegant but also less efficient than a software-centric design.”. 
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Introduction 
Over the past 20 years or so, the composition of 
telemetry and instrumentation systems has 
changed. For most of those years, there has 
been presentations, discussions, papers and 
exhibits on how the “new” technology can be 
used to deliver various advantages over the “old” 
approaches. 

This is another such paper. 

But unlike those earlier write-ups, this one is 
oriented from the problem-solving perspective: 
how can a device serve the required purposes. 

It must be noted that this paper is “loosely based” 
on a real project, but it does not focus on the 
specifics of that program, for two main reasons: 
first, no two projects are identical, so whatever 
challenges and solutions one program team 
identifies, the chances are very likely that 
another effort would have, at best, similar-but-
different tasks, and the second reason is that the 
a deep-dive into a single program is likely to be 
both irrelevant to even well-versed readers, and 
may also contain proprietary or even confidential 
information. 

Accordingly, this paper describes a “lightly 
fictionalized” program, based on a real effort but 
with excessive detail omitted for the sake of 
readability. 

Similarly, the specific detailed capabilities of the 
test equipment used in the program isn’t 
described unless that capability is relevant to the 
narrative. For example, efforts required to work 
around specific limitations of test equipment 
(ours or that of other vendors) are not particularly 
interesting to anyone who isn’t using that specific 
set of equipment, so are omitted regardless of 
the amount of effort involved in the work-around  
– unless, of course, the limitation was a product 
of a standard or architectural model that would 
apply to a whole class of devices. 

Background 
At first glance, the requirements of the program 
for a Mission Data Recorder were not particularly 
onerous: a few hundred megabits of data and a 
few terabytes of storage. The I/O interfaces were 
straightforward Ethernet, the recording format 
should be IRIG-106, Inter-Range 
Instrumentation Group (IRIG) 106 Chapter 10 
Digital Recording Standard, with the only 
marginally unusual feature being a requirement 



that the recorder be able to act as a Grand 
Master time source in accordance with 
IEEE/1588, Institute of Electrical and Electronics 
Engineers Standard for a Precision Clock 
Synchronization Protocol  for Networked 
Measurement and Control Systems, version 2. 

Certainly, there were also atypical file retrieval 
specifications: in accordance with IETF RFC 
959, File Transfer Protocol, using Transport 
Layer Security (TLS) in accordance with IETF 
RFC 4217, Securing FTP with TLS. However, 
perhaps the atypicality of this is remarkable 
mostly by the fact that all FTP connections aren’t 
routinely secured with TLS! 

There were also requirements for video 
manipulation (changing frame rates and 
compression ratios), but these were fairly 
localized to a particular retrieval channel. 

The environmental requirements were fairly 
conventional, with the exception of those for 
radiation exposure; since the vehicle was 
designed for extreme altitudes, the objective was 
for the solution to be “rad hard”; or to be exact, 
tolerant of higher-than-normal radiation levels; 
see Figure 1. 

 
Figure 1 Radiation Levels 

The relevance of the radiation tolerance may 
seem slight when viewed in the context of the 
topic of this paper, but as will be seen it is a 
critical factor in identifying solutions. 

Trimming Chapter 10 
As noted earlier, the requirements started by 
specifying an IRIG 106 Chapter 10 recorder.  

However, Chapter 10 contains multiple disparate 
sections, some of which are organized into 
Chapters of their own: Chapter 6 for Command 
and Control, Chapter 9 for Metadata Description 
and Configuration, and Chapter 11 for Packet 
Formats. 

And in addition to those sections in separate 
Chapters, there are significant functional 
requirements remaining in Chapter 10, which are 
relatively independent in isolation but combine to 

define a particularly specific and interoperable 
recorder. See Figure 2 for the visual guide to the 
standard from the 2019 version of the standard, 
which is a little out of date but not inherently 
incorrect (the Data Format & Packetization 
Definition that is referenced as being in section 
10.6 is actually now in Chapter 11, but section 
10.6 now effectively states “see Chapter 11”). 

In addition to requirements for an on-board 
recorder, Chapter 10 reaches beyond the device 
to mandate practices for naming files once 
downloaded, and even when modified. 
Obviously, this sort of detail is overreach for the 
standard’s stated purpose, but relatively 
harmless and easily ignored without breaking 
much, if anything. (Things like the naming of files 
properly belong in a “best practices” handbook, 
not a formal standard). 

 
Figure 2 Diagram of Chapter 10 Standard (2019) 

The Disk and Filesystem Problem 
One of the challenges of using Chapter 10 for 
more than just instrumentation data collection (in 
this case, and for example, general file storage 
using FTP) is that Chapter 10 embraces a 
simplistic model of storage devices and requires 
a primitive filesystem to be used. 

The first challenge is that the standard requires 
that the sector at Logical Block Address (LBA) 1 
on the device be used for the “root” of the 
filesystem (i.e. the first directory block), and that 
LBA 0 is “reserved”, which is interpreted as being 
set to all zeroes. These two requirements 
prevent the use of any commonly used 
volume/partitioning scheme (as LBA 0 
technically must be zeroes), and prevent the use 
of one physical storage device to hold two or 



more Chapter 10 filesystems (as the root of the 
filesystem has to be in LBA 1). 

Of course, sophisticated storage controllers can 
easily get around those issues by combining and 
then dividing one or more physical devices into 
multiple targets, each of which appears to be an 
independent device. But this sort of work-around 
creates additional complexity as Chapter 10 
mandates particular device addresses for the 
download interface and does not embrace the 
concept that there may be multiple devices on a 
single interface. 

Given, then, that Chapter 10 only comfortably 
supports one filesystem, it is unfortunate that the 
filesystem it mandates is unsuited to general 
purpose applications. 

This filesystem is adapted from a NATO 
standard, STANAG 4575. However, the intent of 
that STANAG was (and is) to define a “virtual” 
filesystem that manufacturers of Intelligence, 
Surveillance, and Reconnaissance (ISR) 
recorders could use as a common interface 
between their internal systems and a NATO 
download station. It was always envisaged (by 
the STANAG) that a processor could be in the 
data path during the download operation, so the 
filesystem was designed to be an easy 
“virtualization” of the underlying structures; the 
STANAG is explicitly designed to be usable 
without read/write access to the media. 

But Chapter 10 adopted the STANAG filesystem 
in an architecture where there was no 
expectation of a processor in the download data 
path, instead expecting a bridge between the 
download interface and the storage interface 
(which was most often an industry-standard one 
like IDE or SATA and so to commodity storage 
devices like SSDs, although at least one 
recorder implemented the media interface 
directly to raw flash chips). 

The biggest problem with the filesystem is that it 
requires all files to occupy (apparently) 
contiguous storage; that is, if the first sector of a 
1,000-sector file is at LBA 1234, then the last 
sector will be at LBA (1234+1000-1) = 2233. This 
makes it challenging to support 
writing/appending to more than one file at a time. 
Of course, there are ways to mitigate this 
problem to a greater or lesser degree, such as 
by performing operations like the old Windows 
“Defragment” utility to move isolated chunks of 
one logical file into a single location, but these all 
impose costs in time, performance and capacity 
(or all three). 

However, the Chapter 10 download interface, 
and the related filesystem / partitioning 
constraints, was  designed for a use case where 

a single ground installation (e.g. a test range) 
would be retrieving test data from a variety of 
different recorders. But for this specific 
application, the logistics dictate that the media 
would only ever be directly accessed in one or 
two designated facilities, and perhaps not even 
then since the data can be extracted from the 
recorder in situ using the FTP interface, which 
might be quicker than waiting until the recorder 
can be accessed, the media extracted and 
transported to the facility where it would be 
accessed. 

Therefore, it was agreed that the parts of 
Chapter 10 relating to the download interface 
were unnecessary and could be excluded from 
the requirements with which the recorder must 
comply that are derived from Chapter 10. 

Solution Approach 
The first design decision to be made is regarding 
the product baseline. Obviously, a solution that 
reuses an existing product is likely to be lower 
cost and lower risk than one which starts with a 
“clean sheet”, with the tradeoff that a modified 
product may be less efficient by one or more 
metrics (size, weight, power, etc.). 

The two viable “reuse” options would be to start 
with a classic “Chapter 10” recorder and add the 
file server features (support for secured FTP, 
etc.), or to start with a file server product and add 
Chapter 10 capabilities. As previously 
discussed, the filesystem issues inherent with a 
“pure” Chapter 10 system were moot, so the 
analysis of the two options boiled down to 
assessing how much of the workload was classic 
Chapter 10 data acquisition, and how much was 
related to post-acquisition processing. 

With a view particularly to the video manipulation 
requirements, a decision was made that a file 
server platform adapted to handle Chapter 10 
would be most appropriate. 

A side benefit of using a server platform is that 
the hardware and software environments are 
more scalable: if more CPU power is needed, 
that’s usually an easy upgrade. 

Chapter 10 Data Type Fidelity 
In the development of the Chapter 10 standard, 
a lot of attention was paid to the idea that the 
recorder should not manipulate the acquired 
signals, and therefore recordings made on 
different products from different vendors could 
be compared. 

This lead to a slightly unexpected resistance 
within the standard-making body to certain 
“obvious” data types, initially centered around 
Time, Space, Position Information (TSPI) data: 
since that data was usually acquired through a 



RS-232 serial port in accordance with the 
NMEA 0183 standard supported by many GPS 
receivers, it should be stored in the recording as 
RS-232 serial data, even though the data was 
TSPI data and it would be much more 
convenient if analysis/exploitation software 
could process it as expected. 

The counterpoint to those resisting the sort of 
manipulation needed to pull TSPI data out of a 
data stream received over a serial port is simply 
that treating a serial port as a data type is 
similarly inappropriate: it should properly (using 
that logic) be captured as a stream of “1” / “0” 
pulses, or even a sequence of analog voltage 
levels. While obviously a preposterous 
approach, it illustrates the inflexibility of the “no 
manipulation” position. 

This position extended especially to Ethernet: 
the interface type was Ethernet, therefore the 
recorder should (only) record data as a series of 
low-level Ethernet frames. While that might be 
useful for test instrumentation engineers building 
a test system (“Is the network working?”), in 
general that’s less useful than, for instance, 
pulling out a video streamed over Ethernet and 
storing it as a video, eliminating as irrelevant the 
fact that it was transported by Ethernet for at 
least part of the journey from camera to recorder. 

Obviously, for this program, and indeed for all 
traditional programs, the decision as to how a 
particular data stream should be recorded 
belongs solely with the program, and standards 
should not interfere with the preferences and 
decisions of the people designing the solution. 

This feature represents the first extension of the 
nominal set of requirements: instead of a pure 
“Chapter 10 Recorder”, the program needs a 
recorder that will repackage received data into 
the appropriate data types, regardless of how 
that data was delivered. 

This feature extension also drives the need 
either for a more powerful processor and suitable 
software, or for a dedicated subsystem, likely 
based on an FPGA and customized firmware. 
While the latter is likely more efficient by many 
metrics, the former is more flexible and easier to 
implement in stages. 

Hardening 
Having identified that a fileserver system was the 
best choice on which to base the solution, the 
next step was to explore how to meet the 
radiation requirements. 

This involved extensive discussion with the 
customer’s subject matter experts. Given that 
the recording system wasn’t critical for flight, it 
was determined that some core “data integrity” 

steps (such as Error Correcting Codes on the 
memory interfaces) and thickened chassis walls 
would likely address data corruption, while a 
watchdog circuit would be sufficient to protect 
against the system locking up or crashing. 

Component selection for the system as a whole 
would include radiation considerations; for 
example, the CPU was selected to use a 22nm 
FinFET process, which has shown excellent 
radiation performance, and MOSFETs were 
derated to 75% of their operating voltages to 
reduce the probability of a “single event gate 
rupture”. In addition, lead-based solder was used 
in place of lead-free processes, and so on. 

Obviously, the watchdog circuit would have to be 
manufactured out of radiation hardened 
components, as would the power supply, but 
beyond those two subsystems, everything else 
could be fairly standard. The watchdog was 
implemented in a FPGA using a Triple Module 
Redundancy, to provide an overall system 
monitor providing a series of counters, checks 
and responses to provide a fault detection, 
isolation and recovery (FDIR) methodology. 

The only additional design decision was to 
switch the bulk data storage from being NVMe 
based on PCI Express back to SATA, since it 
was considered more likely that an radiation 
event upset on an NVMe interface could impact 
more of the system (as PCI Express is the main 
system bus), while a SATA controller can be 
reset without restarting the whole machine. 

One curious aspect of this specific project is that 
the mission length is significantly longer than is 
typical for regular terrestrial flight tests. With a 
single mission estimated to last about 11 weeks, 
and the design life of the system required to be 
for 15 missions, this equates to approximately 
three years in the high-radiation environment. So 
while the dosage rates are quite low, the overall 
dose is not insignificant. 

Chapter 10 Data Types, Redux 
The implications of the radiation hardening 
extended beyond the recorder enclosure: since 
the data acquisition that arrived at the recorder 
did so over Ethernet, at some point in the overall 
instrumentation architecture there had to be 
Data Acquisition Units (DAUs). 

The challenge for the recorder is that, because 
the DAUs also had to be radiation tolerant, the 
number of vendors / product options was 
extremely limited; in fact, only one vendor 
offered a range or “rad tolerant” DAUs. 
Unfortunately, these DAUs are manufactured by 
a European company, and so their adherence to 
the Chapter 10 standard was effectively nil; while 
they collected data and sent it out over Ethernet, 



they used the IENA protocol, not the Chapter 
10/11 format. 

 
Figure 3 IENA Packet Format 

This creates a new problem: since at least one 
of the customers for the data is a US 
Government agency, Chapter 11 data packets 
are a de facto requirement. So some degree of 
data conversion would be required. And the 
conversion would have to be much more 
sophisticated than was the case with video. 

Figure 4 Chapter 11 Packet Structure 

To expound on that point: video carried over 
Ethernet is (usually) “just” a series of MPEG 
Transport Stream (TS) packets placed in UDP/IP 
datagrams, while video in Chapter 10 is the 
same TS packets dropped into a Chapter 11 
packet type, with some added header and trailer 
information. But other data types generally carry 
assumptions that may or may not align with a 
different standard. 

The most prominent example is with time. A 
Chapter 11 packet has a “Relative Time 
Counter” in the header (48 bits), an optional time 
field in the Packet Secondary Header (64 bits), 
and an Intra-Packet Time Stamp in the payload 
(for some data types only, either 48 or 64 bits 
long). The IENA packet only has a single time 
field at 48 bits in length. Mapping the two packet 
formats requires understanding how the time is 
measured in each architecture. 

And this is where the significance of the radiation 
requirements comes in: because the DAUs were 
COTS products, modifying them to output 
Chapter 11 packets would require significant 
software/firmware modifications, and possibly 
even hardware revisions. Therefore, the 
conversion had to happen at the recorder, not 
the DAUs. 

Fortunately, there was a very limited number of 
data types, and despite the DAU vendor being 
unwilling to cooperate directly, we could 

establish a mapping between the IENA fields 
and values and Chapter 11 ones. This mapping 
is not universal and might not work too well for 
other applications, but it is sufficient for this 
specific project. 

Parameter Extraction 
Once the core data acquisition system, including 
the format conversion, was completed, the next 
added task was to implement a scheme to 
usefully reduce the data rate, so as to 
accommodate a very limited telemetry downlink 
channel. As may be expected, the greatest 
challenge was to define a very flexible control 
interface, so that the user could specify the 
parameters to extract and the rate at which to 
send the extracted samples; also considered, 
but ultimately rejected as unnecessary for this 
application, was whether provide averaging or 
min/max functions to the down-sampled 
parameters. 

The control language was implemented by 
vendor extensions to IRIG 106 Chapter 9, the 
Telemetry Attributes Transfer Standard 
(TMATS). While pretty much universally disliked, 
the overwhelming advantage of TMATS is that it 
is widely understood, and tools to manage and 
manipulate TMATS records are relatively 
abundant. 

The telemetry packets were assembled into a 
standard Chapter 10 UDP Data Transfer stream 
and dispatched to the address of the downlink 
transmitter. In this specific application, the 
downlink channel is an established radio 
network, but architecturally it could just as well 
be an IRIG 106 Chapter 7 Packet Telemetry 
Downlink implementation. 

Vehicle Infrastructure Management 
Once the radiation-hardened recorder system 
was designed, the program started to consider 
using it for additional tasks. 

The first of which is the management of the 
networks and gateways within the vehicle. In 
addition to the on-board operational networks 
(such as the data acquisition networks), there 
are networks designed to be used by payloads 
carried by the vehicle. Naturally, the vehicle 
operators want to be able to isolate and connect 
those payload (cargo) networks to limit 
connectivity to various gateway points at various 
times during the mission, so the recorder (by 
now renamed the Multi-Function Data Recorder) 
was selected as the control node through which 
all other network functions were managed. 

This obviously had relatively little to do with 
“recording”, but it reflects the fact that the device 
hosting the recording software was central to the 
overall vehicle network, and thus represents a 



good site for non-mission-critical ad hoc 
command and control. 

As it turns out, on this specific program the 
implementation of the software to support these 
additional capabilities was via code written by 
Ampex. However, on other programs, the 
recorder was configured to support “containers” 
such as Docker and LXC. 

In many ways, containers are similar to virtual 
machines, but instead of having a whole 
operating system and a virtual machine 
hypervisor, a container uses the same operating 
system kernel as the supporting system, much 
reducing the overhead involved: a container 
running on a particular operating system calls 
exactly the same library and kernel software as 
a traditional application would; the only 
significant difference is that containers use more 
storage space as they duplicate all the files and 
libraries needed so as to ensure integrity of the 
container (all the pieces are present). 

It should be noted that supporting a full 
hypervisor/virtual machine architecture is also 
perfectly possible and allows additional 
capabilities such as the use of different operating 
environments (classically, Windows and Linux, 
with the former used for analysis and the latter 
collection and manipulation) and more rigorous 
cybersecurity boundaries. 

This facility allows third parties to develop 
lightweight, self-contained software packages 
that will not interfere with with each other or with 
the main recording application. 

Cargo Management 
Following on from the concept of controlling the 
network access points that various payloads 
may use, it’s an obvious extension to provide 
health and status interfaces to the various 
payloads. 

This includes both the generic capabilities 
provided by the vehicle, such as control of 
cameras and floodlighting, but also passing 
commands to the various payloads (in both the 
pressurized and unpressurized compartments) 
and returning the responses to the origin. In that 
way, the vehicle can carry “third party” payloads 
and provide access to them through the MDR 
interface. 

Summary 
Traditionally, an instrumentation recorder is 
perceived as an “endpoint” device: data flows to 
it, but the only data flows from it are downloading 
or streaming. 

But as the requirements for data acquisition shift 
inexorably towards networks and DAUs, so does 

the role of the “recorder”: no longer is it just an 
endpoint, but now it becomes a central hub. 

Naturally, it’s still possible to record network data 
using a traditional purpose-built recorder, but the 
very limitations of network recording -- primarily 
the non-deterministic delivery of packets – 
means that general-purpose systems with a 
software-defined recorder are not only viable, 
but more flexible. 

And as the flexibility of the network hub recorder 
gets recognized, additional functionality 
inevitably migrates to the recorder. And the use 
of “packaging” technologies such as containers 
show one approach that will allow even greater 
versatility from these formerly “one trick” 
devices! 
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