
Feature Creep for Efficiency
Malcolm Weir1

1 Ampex Data Systems Corporation, Hayward, California USA,
mweir@ampex.com

Abstract:
For most project managers, additions to the scope of a project are problematic: not only must
the project complete its original goals, but also new ones. And while cost is naturally important,
perhaps the biggest challenge is adapting the design of a system to incorporate new
functionality, which may lead to inefficiency in development and implementation. This paper
describes the sequence of scope changes to a data collection system, and how collaboration
between the customer, the end user and the suppliers increased the functionality of the solution
as the capabilities expanded. The result is a system which started as a simple data collection
device and has evolved into a traffic management system handling data format conversion,
security oversight, instrumentation command and control, traffic routing, and, still, data
collection. This paper provides insight into the process by which the new functionality was
implemented, illustrating how economies of power, mass and volume can be achieved by the
use of specialist software running on versatile hardware. That process is in contrast to the
more traditional "one box, one function" approach with hardware modules, which is
undoubtedly elegant but also less efficient than a software-centric design.”.

Key words: Data acquisition & networks, Networks & Architecture, Data Management,Applications,
Data Management Standards, Security of data, links and networks.

Introduction
Over the past 20 years or so, the composition of
telemetry and instrumentation systems has
changed. For most of those years, there has
been presentations, discussions, papers and
exhibits on how the “new” technology can be
used to deliver various advantages over the “old”
approaches.

This is another such paper.

But unlike those earlier write-ups, this one is
oriented from the problem-solving perspective:
how can a device serve the required purposes.

It must be noted that this paper is “loosely based”
on a real project, but it does not focus on the
specifics of that program, for two main reasons:
first, no two projects are identical, so whatever
challenges and solutions one program team
identifies, the chances are very likely that
another effort would have, at best, similar-but-
different tasks, and the second reason is that the
a deep-dive into a single program is likely to be
both irrelevant to even well-versed readers, and
may also contain proprietary or even confidential
information.

Accordingly, this paper describes a “lightly
fictionalized” program, based on a real effort but
with excessive detail omitted for the sake of
readability.

Similarly, the specific detailed capabilities of the
test equipment used in the program isn’t
described unless that capability is relevant to the
narrative. For example, efforts required to work
around specific limitations of test equipment
(ours or that of other vendors) are not particularly
interesting to anyone who isn’t using that specific
set of equipment, so are omitted regardless of
the amount of effort involved in the work-around
– unless, of course, the limitation was a product
of a standard or architectural model that would
apply to a whole class of devices.

Background
At first glance, the requirements of the program
for a Mission Data Recorder were not particularly
onerous: a few hundred megabits of data and a
few terabytes of storage. The I/O interfaces were
straightforward Ethernet, the recording format
should be IRIG-106, Inter-Range
Instrumentation Group (IRIG) 106 Chapter 10
Digital Recording Standard, with the only
marginally unusual feature being a requirement

that the recorder be able to act as a Grand
Master time source in accordance with
IEEE/1588, Institute of Electrical and Electronics
Engineers Standard for a Precision Clock
Synchronization Protocol for Networked
Measurement and Control Systems, version 2.

Certainly, there were also atypical file retrieval
specifications: in accordance with IETF RFC
959, File Transfer Protocol, using Transport
Layer Security (TLS) in accordance with IETF
RFC 4217, Securing FTP with TLS. However,
perhaps the atypicality of this is remarkable
mostly by the fact that all FTP connections aren’t
routinely secured with TLS!

There were also requirements for video
manipulation (changing frame rates and
compression ratios), but these were fairly
localized to a particular retrieval channel.

The environmental requirements were fairly
conventional, with the exception of those for
radiation exposure; since the vehicle was
designed for extreme altitudes, the objective was
for the solution to be “rad hard”; or to be exact,
tolerant of higher-than-normal radiation levels;
see Figure 1.

Figure 1 Radiation Levels

The relevance of the radiation tolerance may
seem slight when viewed in the context of the
topic of this paper, but as will be seen it is a
critical factor in identifying solutions.

Trimming Chapter 10
As noted earlier, the requirements started by
specifying an IRIG 106 Chapter 10 recorder.

However, Chapter 10 contains multiple disparate
sections, some of which are organized into
Chapters of their own: Chapter 6 for Command
and Control, Chapter 9 for Metadata Description
and Configuration, and Chapter 11 for Packet
Formats.

And in addition to those sections in separate
Chapters, there are significant functional
requirements remaining in Chapter 10, which are
relatively independent in isolation but combine to

define a particularly specific and interoperable
recorder. See Figure 2 for the visual guide to the
standard from the 2019 version of the standard,
which is a little out of date but not inherently
incorrect (the Data Format & Packetization
Definition that is referenced as being in section
10.6 is actually now in Chapter 11, but section
10.6 now effectively states “see Chapter 11”).

In addition to requirements for an on-board
recorder, Chapter 10 reaches beyond the device
to mandate practices for naming files once
downloaded, and even when modified.
Obviously, this sort of detail is overreach for the
standard’s stated purpose, but relatively
harmless and easily ignored without breaking
much, if anything. (Things like the naming of files
properly belong in a “best practices” handbook,
not a formal standard).

Figure 2 Diagram of Chapter 10 Standard (2019)

The Disk and Filesystem Problem
One of the challenges of using Chapter 10 for
more than just instrumentation data collection (in
this case, and for example, general file storage
using FTP) is that Chapter 10 embraces a
simplistic model of storage devices and requires
a primitive filesystem to be used.

The first challenge is that the standard requires
that the sector at Logical Block Address (LBA) 1
on the device be used for the “root” of the
filesystem (i.e. the first directory block), and that
LBA 0 is “reserved”, which is interpreted as being
set to all zeroes. These two requirements
prevent the use of any commonly used
volume/partitioning scheme (as LBA 0
technically must be zeroes), and prevent the use
of one physical storage device to hold two or

more Chapter 10 filesystems (as the root of the
filesystem has to be in LBA 1).

Of course, sophisticated storage controllers can
easily get around those issues by combining and
then dividing one or more physical devices into
multiple targets, each of which appears to be an
independent device. But this sort of work-around
creates additional complexity as Chapter 10
mandates particular device addresses for the
download interface and does not embrace the
concept that there may be multiple devices on a
single interface.

Given, then, that Chapter 10 only comfortably
supports one filesystem, it is unfortunate that the
filesystem it mandates is unsuited to general
purpose applications.

This filesystem is adapted from a NATO
standard, STANAG 4575. However, the intent of
that STANAG was (and is) to define a “virtual”
filesystem that manufacturers of Intelligence,
Surveillance, and Reconnaissance (ISR)
recorders could use as a common interface
between their internal systems and a NATO
download station. It was always envisaged (by
the STANAG) that a processor could be in the
data path during the download operation, so the
filesystem was designed to be an easy
“virtualization” of the underlying structures; the
STANAG is explicitly designed to be usable
without read/write access to the media.

But Chapter 10 adopted the STANAG filesystem
in an architecture where there was no
expectation of a processor in the download data
path, instead expecting a bridge between the
download interface and the storage interface
(which was most often an industry-standard one
like IDE or SATA and so to commodity storage
devices like SSDs, although at least one
recorder implemented the media interface
directly to raw flash chips).

The biggest problem with the filesystem is that it
requires all files to occupy (apparently)
contiguous storage; that is, if the first sector of a
1,000-sector file is at LBA 1234, then the last
sector will be at LBA (1234+1000-1) = 2233. This
makes it challenging to support
writing/appending to more than one file at a time.
Of course, there are ways to mitigate this
problem to a greater or lesser degree, such as
by performing operations like the old Windows
“Defragment” utility to move isolated chunks of
one logical file into a single location, but these all
impose costs in time, performance and capacity
(or all three).

However, the Chapter 10 download interface,
and the related filesystem / partitioning
constraints, was designed for a use case where

a single ground installation (e.g. a test range)
would be retrieving test data from a variety of
different recorders. But for this specific
application, the logistics dictate that the media
would only ever be directly accessed in one or
two designated facilities, and perhaps not even
then since the data can be extracted from the
recorder in situ using the FTP interface, which
might be quicker than waiting until the recorder
can be accessed, the media extracted and
transported to the facility where it would be
accessed.

Therefore, it was agreed that the parts of
Chapter 10 relating to the download interface
were unnecessary and could be excluded from
the requirements with which the recorder must
comply that are derived from Chapter 10.

Solution Approach
The first design decision to be made is regarding
the product baseline. Obviously, a solution that
reuses an existing product is likely to be lower
cost and lower risk than one which starts with a
“clean sheet”, with the tradeoff that a modified
product may be less efficient by one or more
metrics (size, weight, power, etc.).

The two viable “reuse” options would be to start
with a classic “Chapter 10” recorder and add the
file server features (support for secured FTP,
etc.), or to start with a file server product and add
Chapter 10 capabilities. As previously
discussed, the filesystem issues inherent with a
“pure” Chapter 10 system were moot, so the
analysis of the two options boiled down to
assessing how much of the workload was classic
Chapter 10 data acquisition, and how much was
related to post-acquisition processing.

With a view particularly to the video manipulation
requirements, a decision was made that a file
server platform adapted to handle Chapter 10
would be most appropriate.

A side benefit of using a server platform is that
the hardware and software environments are
more scalable: if more CPU power is needed,
that’s usually an easy upgrade.

Chapter 10 Data Type Fidelity
In the development of the Chapter 10 standard,
a lot of attention was paid to the idea that the
recorder should not manipulate the acquired
signals, and therefore recordings made on
different products from different vendors could
be compared.

This lead to a slightly unexpected resistance
within the standard-making body to certain
“obvious” data types, initially centered around
Time, Space, Position Information (TSPI) data:
since that data was usually acquired through a

RS-232 serial port in accordance with the
NMEA 0183 standard supported by many GPS
receivers, it should be stored in the recording as
RS-232 serial data, even though the data was
TSPI data and it would be much more
convenient if analysis/exploitation software
could process it as expected.

The counterpoint to those resisting the sort of
manipulation needed to pull TSPI data out of a
data stream received over a serial port is simply
that treating a serial port as a data type is
similarly inappropriate: it should properly (using
that logic) be captured as a stream of “1” / “0”
pulses, or even a sequence of analog voltage
levels. While obviously a preposterous
approach, it illustrates the inflexibility of the “no
manipulation” position.

This position extended especially to Ethernet:
the interface type was Ethernet, therefore the
recorder should (only) record data as a series of
low-level Ethernet frames. While that might be
useful for test instrumentation engineers building
a test system (“Is the network working?”), in
general that’s less useful than, for instance,
pulling out a video streamed over Ethernet and
storing it as a video, eliminating as irrelevant the
fact that it was transported by Ethernet for at
least part of the journey from camera to recorder.

Obviously, for this program, and indeed for all
traditional programs, the decision as to how a
particular data stream should be recorded
belongs solely with the program, and standards
should not interfere with the preferences and
decisions of the people designing the solution.

This feature represents the first extension of the
nominal set of requirements: instead of a pure
“Chapter 10 Recorder”, the program needs a
recorder that will repackage received data into
the appropriate data types, regardless of how
that data was delivered.

This feature extension also drives the need
either for a more powerful processor and suitable
software, or for a dedicated subsystem, likely
based on an FPGA and customized firmware.
While the latter is likely more efficient by many
metrics, the former is more flexible and easier to
implement in stages.

Hardening
Having identified that a fileserver system was the
best choice on which to base the solution, the
next step was to explore how to meet the
radiation requirements.

This involved extensive discussion with the
customer’s subject matter experts. Given that
the recording system wasn’t critical for flight, it
was determined that some core “data integrity”

steps (such as Error Correcting Codes on the
memory interfaces) and thickened chassis walls
would likely address data corruption, while a
watchdog circuit would be sufficient to protect
against the system locking up or crashing.

Component selection for the system as a whole
would include radiation considerations; for
example, the CPU was selected to use a 22nm
FinFET process, which has shown excellent
radiation performance, and MOSFETs were
derated to 75% of their operating voltages to
reduce the probability of a “single event gate
rupture”. In addition, lead-based solder was used
in place of lead-free processes, and so on.

Obviously, the watchdog circuit would have to be
manufactured out of radiation hardened
components, as would the power supply, but
beyond those two subsystems, everything else
could be fairly standard. The watchdog was
implemented in a FPGA using a Triple Module
Redundancy, to provide an overall system
monitor providing a series of counters, checks
and responses to provide a fault detection,
isolation and recovery (FDIR) methodology.

The only additional design decision was to
switch the bulk data storage from being NVMe
based on PCI Express back to SATA, since it
was considered more likely that an radiation
event upset on an NVMe interface could impact
more of the system (as PCI Express is the main
system bus), while a SATA controller can be
reset without restarting the whole machine.

One curious aspect of this specific project is that
the mission length is significantly longer than is
typical for regular terrestrial flight tests. With a
single mission estimated to last about 11 weeks,
and the design life of the system required to be
for 15 missions, this equates to approximately
three years in the high-radiation environment. So
while the dosage rates are quite low, the overall
dose is not insignificant.

Chapter 10 Data Types, Redux
The implications of the radiation hardening
extended beyond the recorder enclosure: since
the data acquisition that arrived at the recorder
did so over Ethernet, at some point in the overall
instrumentation architecture there had to be
Data Acquisition Units (DAUs).

The challenge for the recorder is that, because
the DAUs also had to be radiation tolerant, the
number of vendors / product options was
extremely limited; in fact, only one vendor
offered a range or “rad tolerant” DAUs.
Unfortunately, these DAUs are manufactured by
a European company, and so their adherence to
the Chapter 10 standard was effectively nil; while
they collected data and sent it out over Ethernet,

they used the IENA protocol, not the Chapter
10/11 format.

Figure 3 IENA Packet Format

This creates a new problem: since at least one
of the customers for the data is a US
Government agency, Chapter 11 data packets
are a de facto requirement. So some degree of
data conversion would be required. And the
conversion would have to be much more
sophisticated than was the case with video.

Figure 4 Chapter 11 Packet Structure

To expound on that point: video carried over
Ethernet is (usually) “just” a series of MPEG
Transport Stream (TS) packets placed in UDP/IP
datagrams, while video in Chapter 10 is the
same TS packets dropped into a Chapter 11
packet type, with some added header and trailer
information. But other data types generally carry
assumptions that may or may not align with a
different standard.

The most prominent example is with time. A
Chapter 11 packet has a “Relative Time
Counter” in the header (48 bits), an optional time
field in the Packet Secondary Header (64 bits),
and an Intra-Packet Time Stamp in the payload
(for some data types only, either 48 or 64 bits
long). The IENA packet only has a single time
field at 48 bits in length. Mapping the two packet
formats requires understanding how the time is
measured in each architecture.

And this is where the significance of the radiation
requirements comes in: because the DAUs were
COTS products, modifying them to output
Chapter 11 packets would require significant
software/firmware modifications, and possibly
even hardware revisions. Therefore, the
conversion had to happen at the recorder, not
the DAUs.

Fortunately, there was a very limited number of
data types, and despite the DAU vendor being
unwilling to cooperate directly, we could

establish a mapping between the IENA fields
and values and Chapter 11 ones. This mapping
is not universal and might not work too well for
other applications, but it is sufficient for this
specific project.

Parameter Extraction
Once the core data acquisition system, including
the format conversion, was completed, the next
added task was to implement a scheme to
usefully reduce the data rate, so as to
accommodate a very limited telemetry downlink
channel. As may be expected, the greatest
challenge was to define a very flexible control
interface, so that the user could specify the
parameters to extract and the rate at which to
send the extracted samples; also considered,
but ultimately rejected as unnecessary for this
application, was whether provide averaging or
min/max functions to the down-sampled
parameters.

The control language was implemented by
vendor extensions to IRIG 106 Chapter 9, the
Telemetry Attributes Transfer Standard
(TMATS). While pretty much universally disliked,
the overwhelming advantage of TMATS is that it
is widely understood, and tools to manage and
manipulate TMATS records are relatively
abundant.

The telemetry packets were assembled into a
standard Chapter 10 UDP Data Transfer stream
and dispatched to the address of the downlink
transmitter. In this specific application, the
downlink channel is an established radio
network, but architecturally it could just as well
be an IRIG 106 Chapter 7 Packet Telemetry
Downlink implementation.

Vehicle Infrastructure Management
Once the radiation-hardened recorder system
was designed, the program started to consider
using it for additional tasks.

The first of which is the management of the
networks and gateways within the vehicle. In
addition to the on-board operational networks
(such as the data acquisition networks), there
are networks designed to be used by payloads
carried by the vehicle. Naturally, the vehicle
operators want to be able to isolate and connect
those payload (cargo) networks to limit
connectivity to various gateway points at various
times during the mission, so the recorder (by
now renamed the Multi-Function Data Recorder)
was selected as the control node through which
all other network functions were managed.

This obviously had relatively little to do with
“recording”, but it reflects the fact that the device
hosting the recording software was central to the
overall vehicle network, and thus represents a

good site for non-mission-critical ad hoc
command and control.

As it turns out, on this specific program the
implementation of the software to support these
additional capabilities was via code written by
Ampex. However, on other programs, the
recorder was configured to support “containers”
such as Docker and LXC.

In many ways, containers are similar to virtual
machines, but instead of having a whole
operating system and a virtual machine
hypervisor, a container uses the same operating
system kernel as the supporting system, much
reducing the overhead involved: a container
running on a particular operating system calls
exactly the same library and kernel software as
a traditional application would; the only
significant difference is that containers use more
storage space as they duplicate all the files and
libraries needed so as to ensure integrity of the
container (all the pieces are present).

It should be noted that supporting a full
hypervisor/virtual machine architecture is also
perfectly possible and allows additional
capabilities such as the use of different operating
environments (classically, Windows and Linux,
with the former used for analysis and the latter
collection and manipulation) and more rigorous
cybersecurity boundaries.

This facility allows third parties to develop
lightweight, self-contained software packages
that will not interfere with with each other or with
the main recording application.

Cargo Management
Following on from the concept of controlling the
network access points that various payloads
may use, it’s an obvious extension to provide
health and status interfaces to the various
payloads.

This includes both the generic capabilities
provided by the vehicle, such as control of
cameras and floodlighting, but also passing
commands to the various payloads (in both the
pressurized and unpressurized compartments)
and returning the responses to the origin. In that
way, the vehicle can carry “third party” payloads
and provide access to them through the MDR
interface.

Summary
Traditionally, an instrumentation recorder is
perceived as an “endpoint” device: data flows to
it, but the only data flows from it are downloading
or streaming.

But as the requirements for data acquisition shift
inexorably towards networks and DAUs, so does

the role of the “recorder”: no longer is it just an
endpoint, but now it becomes a central hub.

Naturally, it’s still possible to record network data
using a traditional purpose-built recorder, but the
very limitations of network recording -- primarily
the non-deterministic delivery of packets –
means that general-purpose systems with a
software-defined recorder are not only viable,
but more flexible.

And as the flexibility of the network hub recorder
gets recognized, additional functionality
inevitably migrates to the recorder. And the use
of “packaging” technologies such as containers
show one approach that will allow even greater
versatility from these formerly “one trick”
devices!

Acknowledgements
The author acknowledges the contributions and
hard work of Paul Carrion, Peter Chan, Kevin
Hudson, and Hal Steger without whom this
solution would have remained a hypothetical
though experiment, instead of an operational
space-going Multi-Function Recorder.

	Feature Creep for Efficiency
	Abstract:
	Introduction
	Background
	Trimming Chapter 10
	The Disk and Filesystem Problem
	Solution Approach
	Chapter 10 Data Type Fidelity
	Hardening
	Chapter 10 Data Types, Redux
	Parameter Extraction
	Vehicle Infrastructure Management
	Cargo Management
	Summary
	Acknowledgements

