

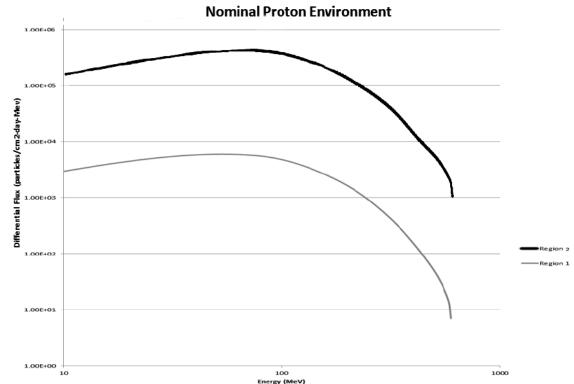
Feature Creep for Efficiency

Malcolm Weir, Chief Technical Officer, Ampex Data Systems

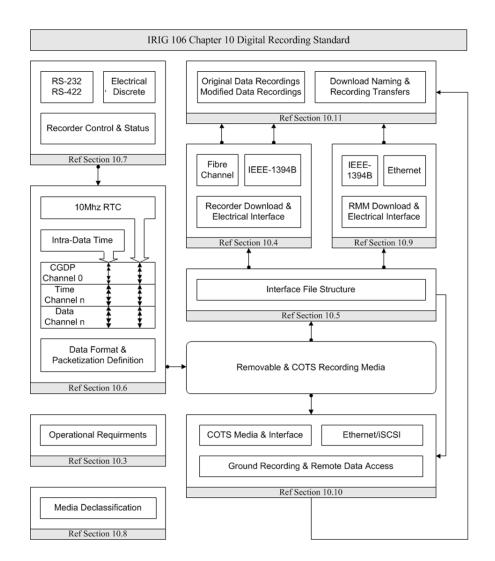
Background (aka "The Story So Far...")

- For years, events like ETTC and ITC have hosted talks and even demos of network-based instrumentation systems
 - Generally Flight Test Instrumentation, FTI.
- However, few have gone beyond discussing networking vs traditional instrumentation systems
 - i.e. little insight in what else the network could do!
- This presentation discusses that surrounding ecosystem
 - How an FTI solution became a platform hub

Disclaimer...

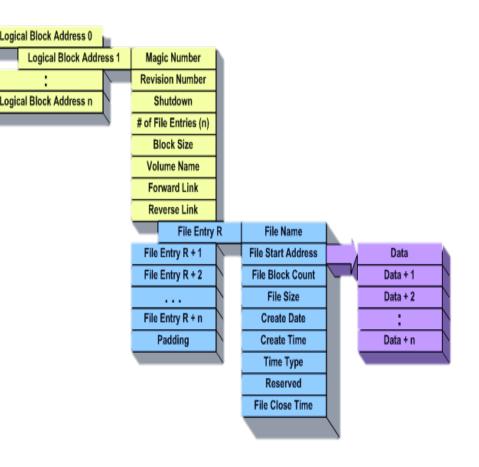

"The following is a true story. Only the names have been changed to protect the guilty..."

- For narrative purposes, and for consistency with ETTC preferences, most of this presentation has been simplified so that it addresses the requirement & the "broad brush" solution
 - Avoiding implementation details
- It may appear that Ampex's customer had not considered a number of issues ("feature creep")
 - In fact, the problems were well understood, this only "creep" was to our device instead of some other solution


In the beginning,,,

- The initial requirement set was for:
 - A Chapter 10 recorder
 - Using Ethernet I/O
 - Both acquisition and distribution
 - Data to be telemetered to US Government
 - Ethernet time
 - Additional data access protocols
 - FTP & TLS
 - Video manipulation
 - Down-sampling, etc
 - High radiation environment
 - Recorder to operate in two zones

First Step: Trim Chapter 10


- Chapter 10 is a massive collection of requirements
 - Some good and valid
 - Some not so much
 - E.g. file naming
 - There is a handbook which should be used (more) for such "advisory" details
- "Core" of the standard has been the data formats
 - Formerly section 10.6
 - Now Chapter 11
- There are two significant problems
 - See next slides

The Chapter 10 Filesystem Problem

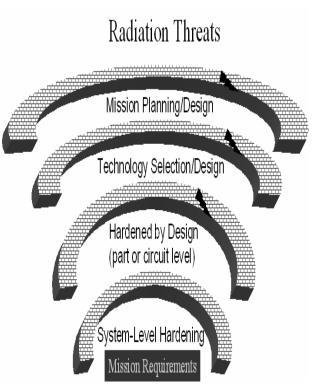
- Ch10 adopted a filesystem originally designed as a virtual abstraction of several competing underlying filesystems
- Because Ch10 was originally targeted at lighter weight systems, assumptions were made:
 - That the "virtual" abstraction = physical layout
 - That "LBA 0" was the first sector on the disk
 - Not the first on a partition
 - This prevents partitioning
- This filesystem forces contiguous files
 - Limits concurrent writes
- So this was removed to increase efficiency

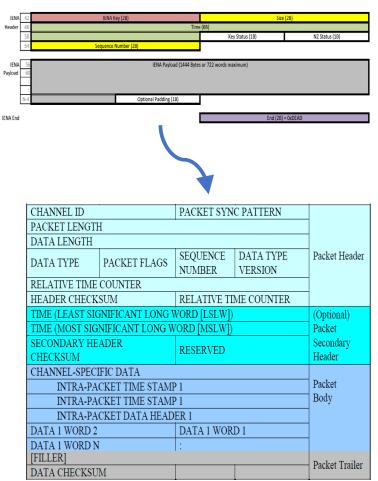
Chapter 10 Data Type Fidelity (aka "the TSPI problem")

- Chapter 10 was designed with some rigid assumptions
 - The Relative Time Counter would only advance
 - Data would be committed to media within 100ms of the occurrence
 - Data would be recorded in the format it was received
- This precludes a recorder manipulating the data
 - E.g. TSPI data is usually received over RS-232/RS-422 or MIL-STD-1553 interfaces
 - But less useful for processing
 - And what's the appropriate level?
 - Do we record RS-232 as an analog signal, and if not, why not?
- Ethernet is largest "offender"
 - Receiving Ethernet is "supposed" to result in a channel full of low-level frames
 - But if those frames are an MPEG Transport Stream, you want a VIDEO channel
 - Storing data "properly" increased efficiency

Where to begin?

- The initial call was whether to add Chapter 10 handling to a server product, or add file serving to a Chapter 10 product
 - We opted for the former, as the video manipulation was going to be easier
- On a file server, we could host the *ffmpeg* package
 - Use Chapter 9 "TMATS" to provide a single config point
 - *ffmpeg* supports a lot more than down-sampling
- Using a general purpose server also facilitated the provision of parameter extraction / manipulation software
 - Standard platform = easy for third parties to develop
 - Less work (for us) = more efficient (for us)




Radiation Hardening Tolerance Strategy

- On evaluation, *hardening* was not strictly necessary
 - The recorder wasn't "mission critical"
 - A "detect and reset" approach was satisfactory
 - The result is termed "rad tolerant", not "rad hardened"
- To obtain rad tolerance, a rad hard PSU and resilient watchdog are required
 - Watchdog resets the system on hang ups
 - Implemented with three voting pieces
- The rest of the tolerance comes from specific component choices
 - CPU based on "well known" technology (14nm Fin-FET)
 - ECC Everywhere
 - Simpler interfaces where practical (SATA vs NVMe)

Why Rad Tolerance/Hardening Mattered...

- But the DAUs providing most of the data had to be hardened too...
 - Limited sources of rad-hard DAUs
 - And those weren't in the Chapter 11 ecosystem
- So adding to the "data type conversion" task was conversion from (a few) IENA packet types to Chapter 11
 - The alternative was to convert "a bunch" of DAUs to produce Ch11 packets
- Because of the constrained set of requirements, shortcuts could be taken
 - Not every IENA packet would be convert-able


Vehicle Infrastructure Management

- The initial design had the recorder as an endpoint
 - With other devices acting as traffic managers
- Because the recorder was a general-purpose system, those functions got moved to it. This included both:
 - "Firewall" type operations
 - Cargo hold monitoring
 - Lights and cameras
- The management/configuration of the recorder (via TMATS) provided a convenient single point for upload/version control/etc
- The result makes the recorder more of a data hub

Cargo Management

- The vehicle is designed to carry payloads from third parties
- There is an need to provide a pathway to the cargo payloads from the ground
 - Owner can monitor health & status
- The approach is to use Linux containers
 - Docker/LXC/etc
 - Lightweight virtual machines using "the same" OS kernel as the host
 - Isolating the third party applications / utilities / libraries, different payloads coexist & are blissfully ignorant of the environment or indeed each other

Lessons Learned

- Understand background to requirements
- Look at software platforms over hardware
 - General purpose over specific
 - "Software Defined Recorder"
- Don't reinvent the wheel
 - Even if it's a bit wonky
- Reuse technology baselines
 - Containers
 - ffmpeg

THANK YOU

Malcolm Weir

Email: <u>mweir@ampex.com</u> Cell: +1 (415) 367 2150 Office:

AMPEX DATA SYSTEMS CORPORATION

26460 Corporate Ave. Hayward CA 94545 USA +1.650.367.2011 www.ampex.com

AMPEX DATA SYSTEMS | A DELTA INFORMATION SYSTEMS COMPANY

27-Jun-24